A synthetic biochemistry molecular purge valve module that maintains redox balance

Abstract from Nature Communications (volume 5, Article number: 4113)

The greatest potential environmental benefit of metabolic engineering would be the production of high-volume commodity chemicals, such as biofuels. Yet, the high yields required for the economic viability of low-value chemicals is particularly hard to achieve in microbes owing to the myriad competing biochemical pathways. An alternative approach, which we call synthetic biochemistry, is to eliminate the organism by constructing biochemical pathways in vitro. Viable synthetic biochemistry, however, will require simple methods to replace the cellular circuitry that maintains cofactor balance. Here we design a simple purge valve module for maintaining NADP+/NADPH balance. We test the purge valve in the production of polyhydroxybutyryl bioplastic and isoprene—pathways where cofactor generation and utilization are unbalanced. We find that the regulatory system is highly robust to variations in cofactor levels and readily transportable. The molecular purge valve provides a step towards developing continuously operating, sustainable synthetic biochemistry systems.

Click to access the article

Screenshot 2025-02-27 at 16.20.06